
Soldier Station:
Integrating Constructive and Virtual Models

Shirley Pratt and David Pratt
Department of Computer Science, Naval Postgraduate School, Monterey, CA 93943

pratts@cs.nps.navy.mil pratt@cs.nps.navy.mil

David Ohman and John Galloway
TRADOC Analysis Center, ATRC-WAC, White Sands Missile Range, NM 88002

ohman@trac.wsmr.army.mil gallowaj@trac.wsmr.army.mil

1. Abstract

Soldier Station is a unique simulation system which
bridges the gap between two distinct realms of mod-
eling: constructive and virtual. The Soldier Station
operator controls a simulated dismounted infantry
soldier in a 3D virtual environment with rules of
movement, engagement and tactics provided from a
constructive model. This paper describes the Soldier
Station system, its design, and the integration of two
separate simulations with radically different modeling
philosophies. The features of the resulting system,
its limitations, and plans for future work are pre-
sented.

2. Introduction

Traditional US Army simulations generally fall into
one of two distinct modeling realms: constructive or
virtual. Constructive simulations allow a user the
ability to control one or more battlefield entities sub-
ject to software rules, data and procedures. Entities
are indirectly controlled through the user's interac-
tions with a 2D plan view display and a Graphical
User Interface (GUI). In contrast, virtual simulations
strive to immerse a user into a 3D synthetic envi-
ronment as the entity itself. The user interacts with
various input devices which provide direct control
over the entity. Currently, systems of both types of
simulations are in popular use. Major efforts have
been expended to allow these disparate systems the
ability to participate together in joint Distributed
Interactive Simulation (DIS) exercises. Soldier Sta-
tion is a unique effort which brings the two modeling
realms together within a single DIS-compatible sys-
tem.

Soldier Station bridges the gap between the two
modeling realms by integrating together the US
Army's constructive Janus model algorithms and the
Naval Postgraduate School's NPSNET virtual envi-

ronment system. It allows for visual realism and user
interactivity that is currently not available in standard
US Army constructive models. It utilizes realistic
movement, detection and engagement algorithms not
present in most virtual simulators. The integration of
two well established simulations represents a signifi-
cant reduction in project risk while offering signifi-
cant advantages over building either system
independently. The primary purpose of Soldier Sta-
tion is to serve as an analytic tool for TRADOC
Analysis Center (TRAC) to address Land Warrior
program issues concerning Dismounted Infantry (DI)
command and control, situational awareness, tactics,
techniques and procedures.

Soldier Station is DIS-compatible and able to in-
teroperate with other constructive and virtual systems
which use DIS Version 2.0.3 or 2.0.4 network pro-
tocols. The availability of a particular terrain data-
base format required by an application, however, can
be another limiting factor to this interoperatilibity.
As part of this project, a terrain tool was developed to
convert the gridded Janus terrain data into a polygo-
nal database format appropriate for many visual simu-
lations including NPSNET and Soldier Station.
Generally speaking, terrain format incompatibilities
are a major problem in the DIS simulation commu-
nity which exceeds the scope of this paper.

3. System Overview

Soldier Station is actually a system of systems. It is
designed to run on two separate Silicon Graphics
(SGI) workstations, a multiple processor SGI Onyx
Reality Engine2 and a SGI Indy. Two machines are
used to accommodate the large graphics and CPU
processing requirements of the main simulation sys-
tem and to meet substantial user interface system
demands. One SGI Onyx with a multi-channel op-
tion (MCO) is actually more expensive and more
likely to become overloaded resulting in poor system
performance than a two machine system.

3.1 User Interface Components

Figure 1 shows the various user interface components
of Soldier Station. The visual display is a 3D per-
spective view of the synthetic environment. This
view depends on the DI entity's posture, head and
body orientation and the current sensor. From two
nearby speakers the user can hear DIS networked bat-
tlefield sounds. Verbal communication with other
DIS participants is possible using a telephone or ra-
dio headset.

The operator controls the input speed and the sol-
dier's posture using levers and switches on the BG
Systems Flybox input device. The Flybox joystick

has three degrees of freedom allowing body and
head/weapon orientation (heading and pitch). It also
has a trigger for weapon firing capabilities. From the
touch screen GUI the user may easily select different
types of weapons, sensors or instruct the DI entity to
execute one of numerous different types of hand sig-
nals. To orient himself on the battlefield, there is a
2D map which can show various information over-
lays and the relative position of other detected or dead
entities. The GUI also has a compass which indi-
cates the current body and head/weapon orientation,
and various textual feedback information (i.e. location
coordinates, actual speed of travel, ammunition
rounds left, movement/injury status). Table 1 sum-

marizes some of the various options which the Sol-
dier Station operator may select while controlling the
DI.

Touch Screen

FlyBox

Communications

Speaker

Figure 1: User Interface Components of Soldier Station

3.2 Software Components

The software components of Soldier Station are
shown in Figure 2. The main system runs on the
SGI Onyx and is comprised of two tightly coupled
modules, a Visualization Module (VM) and a Com-
bat Module (CM). The User Interface System (UIS)
runs on the SGI Indy and consists of two separate

applications, a GUI and a sound server.

The VM is responsible for overall Soldier Station
program control. It is a modified version of Naval
Postgraduate School's NPSNET Version IV.8 system
(Pratt et al., 1996b). NPSNET is an object oriented
C++ application which uses the SGI Performer visual
simulation toolkit (Rohlf and Helman, 1994) to cre-
ate 3D graphical representations of terrain, objects,
entities and environmental effects. The VM also pro-
vides DIS network management, remote entity dead
reckoning (DR) and simulation of the local DI entity.
Soldiers are generally represented using a medium
resolution, fully-articulated soldier model and a li-
brary of real-time animations from University of
Pennsylvania's Jack system (Granieri and Badler,
1995).

The Combat Module (CM) is based on the US
Army's Janus system (US Army, 1996). It contains

the FORTRAN algorithms for Soldier Station sys-
tem initialization, DI movement, detection, weapon
firing and damage assessment. These routines, which
were originally part of Verified and Validated (V&V)
Janus Version 4.2 code, were modified to allow en-
hanced user control over the DI entity. Later they
were upgraded to Janus Version 6.0 which most no-
tably supports multiple sides of forces and fratricide.
Although the modified routines are still subject to the

V&V process, they provide realistic feedbacks for
maneuvering over terrain and obstacles, for weapons
firing outcomes and injury determinations which were
not previously present in NPSNET.

The GUI application acts a central collection point for
all of the user input made via the BG Flybox and
touch screen devices. It packages the inputs into
Interface Data Units (IDU) protocols and sends them
to the main system via multicasting. The VM proc-
esses the inputs, makes the appropriate calls to the
CM routines and then sends back feedback data in
IDUs for the GUI to display. Thus, it is possible for
the operator to request unrealistic speeds, postures or
weapon firing given certain situations and be limited
by the CM which allows, in theory, only reasonable
outcomes to occur.

In addition to the feedback data displayed on the
GUI, the user hears various battlefield sounds from an

Main System

GUI

Sound Server

BG Flybox

DIS Network

JanusNPSNET

Speaker

A
Speaker

B

Module

Touch Screen

Multicast Network

Network Interface

Module

SGI Onyx RE2 SGI Indy

Visualization Combat

User Interface System

Figure 2: Software Components of Soldier Station

NPSNET sound server application running on the
SGI Indy. The sound server listens for certain DIS
PDUs which it recognizes as having a sound associ-
ated with them (primarily Fire and Detonation PDUs
and also some of the local entity�s Entity State
PDUs). Upon receiving such PDUs, the distance
between the DI entity and the source of the sound is
computed as the sound wave propagates in the virtual
environment. When the distance is zero, the sound
is played over the speakers adding considerable real-
ism to the simulation.

3.3 System Design Considerations

The Soldier Station system is designed to host the
VM and CM together as a single integrated applica-
tion running on the SGI Onyx. The modules interact
extensively during the simulation and pass consider-
able amounts of information between them. In order
to minimize the communication latency between the
two modules, the CM routines are bundled into a
library and linked to the VM.

Substantial user interface requirements for the Soldier
Station system justify the use of a second low-end
SGI workstation. A separate monitor is needed for a
touch screen. The GUI application manages inputs
from both the touch screen and the BG Flybox de-
vices, passes user input information to the main sys-
tem, and receives and displays feedback information
from the main system. In addition, the sound server
application requires a minimum of 32 MB memory
to be able to play sounds instantaneously upon re-
ceiving the appropriate PDUs. These demands and
the high cost of a new SGI MCO display drove the
decision to run the UIS system on a separate SGI
Indy workstation. This two machine configuration
frees valuable computational resources for the main
system which has substantial demands for graphics,
entity simulation and networking.

As shown in Figure 2, the main system on the SGI
Onyx interacts with the GUI application on the SGI
Indy via multicast networking protocols. Although
multicasting is inherently an unreliable means of
network communication, it provides some attractive
features. Namely, it allows multiple Soldier Station
suites to co-exist on the same physical network by
partitioning the network traffic into separate multicast
groups which each suite can subscribe to (Pratt et al.,
1996a). The ability to subscribe to multiple multi-
cast groups, if desired, also allows the future devel-
opment of a logger application which can record
multicast network traffic for user analysis purposes.

4. System Development

The integration of two distinct simulation systems,
Janus and NPSNET, was much easier said (and
drawn) than done. The integrated system was envi-
sioned to work together seamlessly, however, the two
component systems are based on radically different
modeling philosophies, are written in different com-
puter languages, and utilize different terrain file for-
mats. The integration was primarily carried out in an
stepwise manner with often multiple iterations occur-
ring at each step:

do
 merge code
 test results
 do
 debug problems
 test results
 until CORRECT
until DONE

4.1 Integrating Janus and NPSNET

Integration of the two modules which comprise the
main Soldier Station system required careful coordi-
nation and consideration between the VM and CM
developers. The first step was to identify exactly
what the types of interactions were sought between
the VM and CM. This step produced five main CM
driver routines as listed in Table 2 (Ohman, 1996).

 4.1.1 Modifications to Janus

The appropriate constructive model algorithms for
DIs were isolated from the original Janus code. The
CM continues to use the exact same input data files
as Janus (i.e. FORCE, DEPLOY, JSCRN, and
SYSTEM) and has complete knowledge of all entity
attributes and system characteristics. These CM rou-
tines control one interactive DI entity so at least one
system type in the FORCE file must be the same as
the Soldier Station system type specified during pro-
gram startup. The CM must inform the VM of the
DI entity system type�s capabilities in order for the
user to be able to effectively control the entity. Thus,
SS_setup passes back the names of the weapons and
sensors along with the starting number of ammuni-
tion rounds available for each program run.

Some modifications to the Janus routines were intro-
duced to resolve time and space incompatibilities and
to provide enhanced user control. Since Janus is an
event driven simulation, changes were made to allow
the CM algorithms to be called in real-time and re-

gardless of the frame rate. Built-in time delays for the
soldier's movements due to obstacles and suppression
by fire were shortened from minutes to seconds in
order to allow the user to respond in a realistic
amount of time to such situations. All references to
nodes for routes and movement control were removed
with input now being provided by the Soldier Sta-
tion operator via the Flybox. The DI entity may
move in one direction and look in another by having
his head turned. He may also now move backwards
so that the soldier can remain facing forward while
retracing his last steps instead of having to turn
around. He can also now enter any infantry foxhole
or vehicle prepared fighting position regardless of
which Janus side it belongs to.

Unlike traditional Janus DIs, the Soldier Station en-
tity can fire his weapon on command at no specific
targets (e.g. generate suppressive fire), and also fire in
a non-horizontal plane. He can detect up to twenty-
five targets (instead of just ten as for Janus DIs) pro-
vided he is alive and does not have a major wound
which might impact his ability to detect targets. If
targets are detected, the CM allows the Soldier Sta-
tion to fire at them regardless of side assuming that
other firing criteria have been met. Thus, the Soldier
Station entity can always possibly commit fratricide
if he does not exercise good judgment in the syn-
thetic battlefield. As in Janus, the firing criteria
which must simultaneously be met include meeting
minimum safe range requirements for firing a weapon,
and meeting weapon jam/clearing times and ammuni-
tion reloading times. Short firing delays are intro-
duced if any of these criteria are not met.

Along with added control the user is also faced with
more potential simulation hazards. For example, the
entity is now also able to step on and detonate de-
tected mines whereas Janus entities can not detonate
mines previously detected. Automatic defilade
status changes have also been removed so that the DI
entity no longer changes from fully exposed to partial
defilade when he stops moving unless directed by the
user to do so. In fact, the DI entity may remain fully
exposed while being fired upon if the user does not
take any action.

For demonstration purposes, the DI entity is also
allowed to be resurrected if killed. In addition to
possibly being killed or suppressed, the soldier may
also now be wounded. For determining a wound
status, the body is divided into six parts, each having
a probability of being wounded depending upon the
current posture. The damage assessment routine
processes direct fire, indirect fire or mine explosion
events.

 4.1.2 Modifications to NPSNET

To integrate the CM with the VM, NPSNET pro-
gram flow was examined to determine where and how
the CM driver routines should be called. Since Sol-
dier Station was designed to use the NPSNET visual
simulation framework, the relatively minor modifica-
tions were needed to be able to interact with them.
These included making coordinate conversions
to/from NPS coordinates to Janus UTM coordinates
and transferring information from C++ dynamic data
structures into static arrays to pass to the CM. Code
was also added to map internal NPSNET vehicle
numbers of remote entities to Janus unit numbers.
These Janus unit numbers are pre-defined in the Janus
FORCE file which is read when SS_setup is called
during system startup. Remote DIS entities must
pass an appropriate Janus unit number in DIS Entity
State PDU markings fields to the VM in order to be
recognized by the CM as valid units (a requirement
which will hopefully be removed in the near future).

Strict interfaces for each of the CM driver routines
were defined, e.g. function name and the number,
type and order of the arguments. C++ wrappers
(which account for the C++ name mangling of func-
tion names and facilitate correct argument type pass-
ing) were then created so that the CM functions could
be called directly from the VM. The five main CM
driver routines and numerous other supporting rou-
tines are archived together in a library object and
linked to the VM.

There were several features added to NPSNET to
comply with the additional capabilities required for
Soldier Station. To allow the Soldier Station entity
the ability to select between up to five different weap-
ons, additional weapon models (besides the existing
M16 rifle) were added with only one showing at any
given time. Additional sensor views for the binocu-
lar and gun sights sensors were added as 2D overlays
over the 3D view along with concurrent changes in
the field of view. To receive the user's inputs from
the UIS, multicast IDUs were defined.

Support for up to six different sides of DIs was pro-
vided. This involved creating DI models with nu-
merous different colored uniforms and one model
which carried no weapon (to be used as a civilian).
Low resolution soldier models were also incorporated
for low level detections which assume that features
such as uniform patterns, faces, objects carried and
even limbs are not visible. Presently, only DIs have
multiple levels of detail models available.

4.2 Conversion of Janus Terrain

The terrain data formats used by Janus and visual
systems such as NPSNET are completely different.
The terrain elevations in Janus are gridded and as-
sumed to be constant within each grid square (or
pixel based). If represented in 3D graphics, the ter-
rain would appear as a collection of cubes with differ-
ent heights. On the other hand, in NPSNET the
terrain file format is polygonal in nature and its repre-
sentation consists of triangles connecting each grid
point to the next grid point forming a relatively
smooth terrain surface when compared to Janus' ter-
rain representation.

The relatively small size of the DI entities demands
smooth 3D terrain representations in order to avoid
large visual abnormalities in the terrain database at
the edge of each Janus grid square. However, the CM
routines still represent the terrain as gridded cells
internally. Thus, there is a mismatch in the internal
terrain representation for each module which some-
times causes the DI entity to appear either above or
below the actual polygonal ground surface. Some
detection mismatches would also likely occur causing
entities to disappear/appear although the VM may not
actually show terrain blocking/not blocking the line
of sight. Both of these problems are more predomi-
nant in terrain areas where steep and/or rapidly vary-
ing gradients exist.

As part of the NPSNET-Janus integration, a SGI-
based software tool was developed to convert the
Janus terrain into a MultiGen Flight format for the
VM. The terrain tool reads in the Janus gridded ter-
rain elevations and the separate polygonal Janus fea-
ture data (vegetation, roads, rivers, buildings, etc.)
and converts them into the required polygonal Mul-
tiGen format. Since the CM uses the Janus terrain
format while the VM uses the polygonal database
format, the Soldier Station system relies on this abil-
ity to convert various Janus terrain databases. With
the availability of MultiGen terrain databases, other
DIS-compatible simulations which also use the for-
mat are also be able to interoperate with Soldier Sta-
tion. So far, Soldier Station has successfully
participated in numerous exercises with remote DIS
entities generated from Janus linked to DIS (JLINK)
(Pate and Roussos, 1996), NPSNET, and another
Soldier Station system.

The terrain tool is capable of automatically handling
most types of Janus terrain databases with minimal
user intervention. Because of the very large number
of grid points present in most Janus terrain data-
bases, the tool subsamples the points, using every

other grid point, in an effort to reduce the number of
polygons. The time it takes to convert a terrain da-
tabase depends strongly on the number of Janus po-
lygonal terrain features as well as on the number of
elevation grid points present. A medium sized ter-
rain database (say, 10 km by 10 km) with an average
number of polygonal features takes about ten minutes
to convert. Currently, small tree areas with relatively
large concave edges can cause some conversion prob-
lems.

4.3 Main Program Flow

Figure 3 is a simplified program flow chart of the
integrated NPSNET-Janus main system. Essentially,
various initializations are carried out and then several
major tasks are carried out continuously as long as
the simulation continues. These tasks include the
handling of DIS network PDUs, handling user input
IDUs, simulation of the local DI entity, updating the
position and statuses of the remote entities and finally
drawing the scene. It is noted, however, that usually
network management and drawing would be handled
asynchronously in a multiprocessing mode.

During program startup, the VM calls SS_setup
once. Various Janus data files are read and, if desired,
post processor data files are started to log data from
the Soldier Station during the simulation. In the
simulation loop, PDUs from other remote entities on
the DIS network are processed. User input IDUs
from the GUI are processed similarly, and given the
current inputs, SS_move is called to determine the
soldier�s next position and his movement status.
Remote entities are updated using dead reckoning,
and once a second SS_search is called to determine
what live entities the Soldier Station entity can de-
tect. Dead entities are not detected by Janus and are
not passed to SS_search. However, they are still dis-
played on the GUI 2D map as black icons and appear
visibly damaged on the synthetic battlefield.

When an IDU packet contains data about a trigger
pull effected, SS_reload is called to determine the
outcome of the firing event. If the weapon was suc-
cessfully fired, a fire PDU is sent out over the DIS
network. If a close proximity detonation PDU is re-
ceived from another remote site, SS_assess is called
to determine the extent of an injury, if any. If the
soldier is uninjured, the simulation proceeds as be-
fore. If the soldier is killed, he can be resurrected by
the user in demo mode, or the user can elect to exit
the simulation. If the soldier is killed or wounded,
movement, detection and/or firing capabilities will be
impaired depending on the injury. For simplicity,
Figure 3 assumes that the DI entity is uninjured.

During each frame, feedback data about the current
status of the DI entity and what entities have been
detected at what detection level (aimpoint, recogni-
tion and identification) is sent back to the GUI. This
feedback information is then displayed on the GUI
and could affect the user's next inputs. Table 3 lists
some of the possible outcomes from making function
calls to the CM driver routines.

The program flow shown in Figure 3 is actually
nearly the same as the normal program flow of
NPSNET with the exception of the calls to CM rou-
tines. Without the CM driver routines, NPSNET
assumes that the DI entity can always move regard-
less of terrain characteristics, can detect anything that
is drawn, can fire upon anything when the trigger is
pulled, and is always fatally wounded by any close
proximity detonation. Clearly, the integration of the
Janus algorithms brings much needed realism into
the visual simulation.

5. Conclusions

The decision to merge Janus and NPSNET together
to form one seamless Soldier Station system was, to
a large extent, governed by practical reasons. Namely,
the analysis needs of the Soldier Station project could

be met while significantly reducing project develop-
ment time and costs by integrating two existing sys-
tems rather than developing either one independently.
By reusing code from NPSNET, Soldier Station ac-
quired a major head start on underlying 3D graphics,
basic entity simulation, DIS networking and sound
requirements. New development efforts could be fo-
cused on the integration with Janus, adding necessary
features which were not currently available in
NPSNET and the development of the UIS. By merg-
ing Janus algorithms, the virtual simulation acquired
robust mobility characteristics and target detections
as well as realistic weapon firing outcomes and injury
assessments. These features replaced non-existent or
very simplistic (and generally unrealistic) graphics
based capabilities which were previously available in
NPSNET.

The combined system, represents a significant im-
provement over either of its component parts, but it
does have some limitations. Currently the representa-
tion of terrain, soldier movements and engagements,
and visual parameters are at moderate levels of detail.
These are subject to change according to the resolu-
tion needed by the simulation, but large, high resolu-
tion terrain databases with many entities (say, more
than fifty) present will degrade the system perform-
ance without further optimizations (as mentioned
below). The inherently different VM and CM inter-

NPSNET
setup

SS_setup

While
simulate

If pulled
trigger SS_reload

Process input da ta

Ini t i al i zat ion

Handle

If SS_search

DR Entities

Send Det PDUIf fi red
weapon

If close
Det PDU SS_assess

Process PDUs
Handle

SS_move
UpdateArticulate DI

Send f eedback to User Interface

DIS t raffic

User input s

Local Ent i t yDraw Scene

Y

Y

Y

Y

Y

Game Ov er N

Update
R emote
Ent i t i est > 1

Figure 3: Simplified Main Program Flow

nal terrain representations causes some visual incon-
sistencies which need to be resolved. For improved
DIS-compatibility, unit numbers should be able to be
created or assigned dynamically within the CM. The
transfer of data from VM's dynamic data structures to
static arrays for the CM routines is unavoidable with-
out major code changes to the VM data structures.
However, this could impact performance otherwise
and requires some in-depth system performance
analyses beforehand. Some data transfers are simply
unavoidable due to C++ and FORTRAN language
differences.

For increased system performance, we plan to spawn
a separate process to obtain the computationally ex-
pensive CM detection routine output asynchronously
via shared memory buffers. Optimizations to the vis-
ual simulation include an upgrade to SGI Performer
2.x which supports terrain database paging and in-
creased use of level of detail modeling techniques.
To significantly lower hardware system costs, we
plan to tune the main system to run on the new,
much less expensive SGI Maximum Impact worksta-
tions. Enhancements for Soldier Station to partici-
pate in night time and urban environment
simulations are also planned in the near future.

6. Acknowledgments

The authors would like to thank Mr. David Ward,
CPT Steve Brown, CPT Bill Smith, MAJ Glen
Roussos, Mr. David Hastings, LTC Ralph Wood,
COL Carl Baxley (Ret) and Mr. Roy Reynolds for
their help and valuable inputs to the system. Devel-
opment and demonstrations of the system would not
have been possible without the support of TRAC-
WSMR, TRAC-MTRY and NPS computer systems
personnel and students.

7. References

Granieri, J. and Badler, N. (1995). Simulating Hu-
mans in VR. To appear in R. Earnshaw, J.
Vince, and H. Jones, editors. Applications of
Virtual Reality, Academic Press.

Naval Postgraduate School, Computer Science De-
partment (1996). NPSNET Research Group In-
ternet Home Page http://www-
npsnet.cs.nps.navy.mil/npsnet.

Ohman, D. (1996) Soldier Station Combat Module
Documentation. Prepared for TRAC-WSMR by
Nations, Inc.

Pate, M., and Roussos, G. (1996) JLINK - A Dis-
tributed Interactive Janus. Phalanx, Vol. 29, No.

1, 12-15.
Pratt, D., Barham, P., Barker, R., and McMillan, S.

(1996a) AUSA 95 DI Demonstration. 14th DIS
Workshop Proceedings, 1165 - 1170.

Pratt, S., Pratt, D., Waldrop, M., Barham, P.,
Ehlert, J., and Chrislip, C. (1996b) Humans in
Large-scale, Real-time, Networked Virtual Envi-
ronments. Submitted for publication in Presence.

Rohlf, J., and Helmann, J. (1994). IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. SIGGRAPH '94 Pro-
ceedings in Computer Graphics, 381-394.

U.S. Army TRADOC Analysis Center, White Sands
Missile Range, NM (1996) Janus Version 6.0
Documentation.

8. Authors� Biographies

Shirley Pratt is a Computer Scientist in the Com-
puter Science Department at Naval Postgraduate
School (NPS). She is the lead developer of the
NPSNET visualization module for the Soldier Sta-
tion system. Ms. Pratt has a M.S. in Ocean Physics
from the U.C. San Diego and a B.A. in Applied
Mathematics from U.C. Berkeley. Her research inter-
ests include real-time modeling of the environment,
virtual simulations of dismounted infantry, and the
use of efficient DIS aggregation protocols.

CW4 David Ohman (Ret) is an Operations Re-
search/Systems Analyst working for Nations, Inc. in
support of the Soldier Station project for TRADOC
Analysis Center, White Sands Missile Range
(TRAC-WSMR). Prior to joining Nations, he was
the only military member assigned as a Software De-
veloper for the Janus Interactive Simulation Devel-
opment Division at TRAC-WSMR. He has an M.S.
in Industrial Engineering from the University of
Texas, El Paso, an M.A. in Management from
Webster University, and a B.S. in Business and
Management from the University of Maryland. He is
also a graduate of the US Army Operations Re-
search/Systems Analysis Military Applications
course.

David Pratt is serving as the first Technical Director
of the Joint Simulation System (JSIMS) Joint Proj-
ect Office in Orlando, Florida. He holds this position
concurrently with an appointment as a tenure track
faculty member at the Department of Computer Sci-
ence, NPS. Prior to joining the faculty at NPS, Dr.
Pratt was a Data Processing Officer in the United
States Marine Corps. He holds a Ph.D. and a M.S.
in Computer Science from NPS and a B.S. in Elec-
trical Engineering from Duke University. His re-
search interests include distributed simulation and

architectures to support scalability in real-time 3D
computer graphics.

John Galloway is an Operations Research Analyst
for TRAC-WSMR. Since joining TRAC-WSMR in
1986, he has been involved with Combined Arms
Support Task Force Evaluation Model
(CASTFOREM), Janus and Soldier Station. He is
the Program Leader for the Soldier Station project
and has worked within the dismounted infantry arena

for constructive models for the past four years. He
has a B.S. in Civil Engineering from New Mexico
State University.

Control Item Available Options User Interface

Posture Upright, Crouching, Kneeling, Prone, Fox hole, Deploy weapon, Align
head and body orientation, Lase target

Flybox Buttons

Sensor Eye balls, Binoculars, Gun Sights (Thermal in future) GUI Radio Buttons

Weapon M16A2 Rifle, M203 grenade launcher, M60 machine gun, M249 semi-
automatic weapon, M72 light anti-tank weapon (Object Individual
Combat Weapon in future)

GUI Radio Buttons

Hand Signals Various signals for movement control, formations, fire control, emer-
gency alerts, echelon designation, and other miscellaneous signals

GUI Push Buttons

Map Display Map displayed, not displayed
Zoom in, zoom out
Show topographical contour shading, grid lines, terrain features, build-

ings, obstacles
Detected entity icons shown, not shown

GUI Push Buttons

Table 1: User Selectable Options for Soldier Station

CM Routine Purpose Example Considerations

SS_setup Reads Janus data. Passes DI capabilities back to
VM

Scenario, run, system number inputs

SS_move Determines current location, actual speed, move-
ment status

Soldier posture / orientation, terrain
characteristics, requested speed,
suppression status, wound status

SS_detect Determines what live entities are visible at what
detection level

Soldier posture / wound status, ac-
tive sensor, target defilade
status/speed, LOS probability

SS_reload Determines firing result, impact point, rounds
remaining

Soldier posture / orientation, target
type, active weapon, rounds left,
time last fired

SS_assess Determines injury, if any, due to a close proxim-
ity detonation

Soldier posture, munition type, im-
pact location, firing entity, luck

Table 2: Description of the Five CM Driver Routines

CM Routine Basic Outputs Specific Information

SS_move Movement status

Speed status

Delay status

Posture status

Moving on a road, in vegetation, in an urban area, in a river

Moving at requested speed, slowed by terrain, moving at maximum
speed allowed, not moving because soldier is kneeling or in a fox hole

Obstructed by a building, fence, another unit, by a river, an abatii, a
smoke pot, a mine

In the requested posture, not in a fox hole because none nearby

SS_detect No entities detected

Entities detected

None

For each entity, detection at level: aim point = 1, recognition = 2, iden-
tification = 3

SS_reload Successfully fired

Unsuccessfully fired

Fired at a target, or generated suppressive fire
 Impact point is XYZ

Unable to fire because:
 Soldier is wounded, moving too fast, being suppressed, not ready to fire
 Range is too far, too close
 Weapon is out of ammunition, pointed at too large of a pitch angle
 Target is a non-combatant, is dead, a low probability hit, a bad target,
 an identified friendly target

SS_assess Injury status

Wound type

Suppression status

Not injured, dead, wounded

Hit in the head, chest, stomach, pelvis, leg, arm

Not suppressed, suppressed by fire

Table 3: Example Feedback Data from theCM

